The Golgi CMP-sialic acid transporter: A new CHO mutant provides functional insights.
نویسندگان
چکیده
A CHO mutant line, MAR-11, was isolated using a cytotoxic lectin, Maackia amurensis agglutinin (MAA). This mutant has decreased levels of cell surface sialic acid relative to both wild-type CHO-K1 and Lec2 mutant CHO cells. The CMP-sialic acid transporter (CMP-SAT) gene in the MAR-11 mutant cell has a C-T mutation that results in a premature stop codon. As a result, MAR-11 cells express a truncated version of CMP-SAT which contains only 100 amino acids rather than the normal CMP-SAT which contains 336 amino acids. Biochemical analyses indicate that recombinant interferon-gamma (IFN-gamma) produced by the mutant cells lack sialic acid. Using MAR-11 as host cells, an EPO/IEF assay for the structure-function study of CMP-SAT was developed. This assay seems more sensitive than previous assays that were used to analyze sialylation in Lec2 cells. Cotransfection of constructs that express CMP-SAT into MAR-11 cells completely converted the recombinant EPO to a sialylation pattern that is similar to the EPO produced by the wild-type CHO cells. Using this assay, we showed that CMP-SAT lacking C-terminal 18 amino acids from the cytosolic tail was able to allow high levels of EPO sialylation. Substitution of the Gly residues with Ile in three different transmembrane domains of CMP-SAT resulted in dramatic decreases in transporter's activity. The CMP-SAT only lost partial activity if the same Gly residues were substituted with Ala, suggesting that the lack of side chain in Gly residues in the transmembrane domains is essential for transport activity.
منابع مشابه
Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese hamster ovary mutant.
The GDP-fucose transporter SLC35C1 critically regulates the fucosylation of glycans. Elucidation of its structure-function relationships remains a challenge due to the lack of an appropriate mutant cell line. Here we report a novel Chinese hamster ovary (CHO) mutant, CHO-gmt5, generated by the zinc-finger nuclease technology, in which the Slc35c1 gene was knocked out from a previously reported ...
متن کاملSialic Acid Transport − Intellectual Disability and Bleeding Diathesis Due to Deficient Cmp
Objective: To identify the underlying genetic defect in a patient with intellectual disability, seizures, ataxia, macrothrombocytopenia, renal and cardiac involvement, and abnormal protein glycosylation. Methods: Genetic studies involved homozygosity mapping by 250K single nucleotide polymorphism array and SLC35A1 sequencing. Functional studies included biochemical assays for N-glycosylation an...
متن کاملImpact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells.
Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-m...
متن کاملSynthesis of a fluorescently tagged sialic acid analogue useful for live-cell imaging.
A cytidine 5'-monophosphate (CMP)-sialic acid analogue carrying a fluorescent reporter group, an inhibitor of sialyltransferase, was synthesised in order to investigate glycan synthesis events in cells. The compound was found to be a substrate of a CMP-sialic acid transporter, and specific Golgi vesicles were visualised in the cells.
متن کاملGlycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system
Glycolipid transport between compartments of the Golgi apparatus has been reconstituted in a cell free system. Transport of lactosylceramide (galactose beta 1-4-glucose-ceramide) was followed from a donor to an acceptor Golgi population. The major glycolipid in CHO cells is GM3 (sialic acid alpha 2-3 galactose beta 1-4-glucose-ceramide). Donor membranes were derived from a Chinese hamster ovary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glycobiology
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2008